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A/r.o;tract-In this paper the fundamental solutions and boundary integral equations for Reissner's
plates on a two parameter foundation are presented. The construction of the fundamental solutions
and the numerical treatment of the boundary integral equations are described in detail. Some
numerical eJlamplcs are studied to demonstrate the correctness and accuracy of the formulation
presented.

INTRODUCTION

The llexural behaviour of plates on clastic foundations is of interest for the design of many
engineering problems. In general, the analysis of this problem is based on the incorporation
or the foundation reaction into the corresponding differential equation of plates. In an
altempt to lind a physically close and mathematically simple representation for this problem,
dilferent models of elastic foundations have been presented. The simplest model is the
Winkler model which is called a one parameter model. The main disadvantage of this model
is the discontinuity of the displacements on the boundary of plates. To overcome this
dilliculty, two parameter models have been developed. A review of two parameter models
as well as the proper mathematical formulation of them has been made by Kerr (1964) and
Selvadurai (1979).

In recent years, the boundary element method has been widely used for solving the
bending problems of plates. There are a few papers concerning the application of the
boundary element method to the bending problems ofthin plates on the Winkler foundation.
Vandcr Weecn (1982) first presented a boundary integral equation formulation for
Reissner's plate. However, to the authors' knowledge, there are no results by BEM for
Reissner platcs on two parameter foundations.

In this paper the fundamental solutions for Reissner's plates on a two parameter
foundation arc presented by the Hormander method (1976) and the introduction ofauxiliary
functions. A boundary integral equation formulation for Reissner's plates on a two par­
amctcr foundation is established by the method of weighted residuals. Some numerical
eX~lmplcs are studied and compared with analytical solutions for different boundary con­
ditions. Numerical results show that the present method has quite good accuracy and high
efficiency.

BASIC EQUATIONS

In what follows, the governing equations for Reissner's plates on a two parameter
foundation are reviewed. Throughout this paper, repeated indices imply the summation
convention of Einstein. Greek indices take values in the range {I, 2}. and Roman indices
in the range {I, 2, 3}. The plane 12 is assumed to coincide with the midsurface of the plate
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whose constant thickness is h. The distributed transverse load in the 13-direction is q. 1/1.
denotes the rotations in the L-direction and W the deflection in the thickness direction.

Relations between the generalized displacements (1/1. and W) and forces (M'6and Q.)
can be written as (Vander Weeen, 1982):

1-~( ~)M'6=D-2- 1/1•.6+1/16.'+ 1-~ 1/17.7~4

1-~
Q. = D-

2
-A,2(I/I.+ w:.), (I)

where D = Eh3/12(1-~2) is the flexural rigidity of the plate, E is Young's modulus, ~ is
Poisson's ratio, and A. = JIO/h is a characteristic quantity of Reissner's model.

The equilibrium equations of the plate are given by:

M.6.6 -Q. = 0

Qu +q-p = 0, (2)

in which p is the interface pressure of the plate and foundation. p can be expressed as (Kerr,
1964):

(3)

where krand Grare the two parameters chamcterizing foundation material. For the Paster­
nak type foundation (Kerr, 1964), krand Gr are the subgrade reaction coefficient and the
shear modulus of the foundation, respectively. V2 is the Laplace operator.

The generalized tractions and displacements on the boundary are

(4)

in which n.. and I.. denote the direction cosines of the outward normal and tangent to the
boundary S of the plate, respectively. Appropriate boundary conditions can be expressed
in the form:

(I) Simply-supported boundary

1/1,=0, W=O, Mft=O.

(2) Clamped boundary

1/1, =0, I/Ift =0, w=o.

(5a)

(5b)

(3) Free boundary.

In this case there are two regions which interact at the boundary S. The plate region
Op with deflection Wp is governed by eqns (2), and the surrounding foundation region Or
with deflection Wr is described by the second order equation for the Pasternak type foun­
dation, which can be written as:

(6)

As was shown by Kerr (1964) there are four boundary conditions on S:
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Wp = Wr, Mit =0, Mit' =0,
awp aWr

p) +Gra;;- = Gr an' on S. (7)

By substituting eqn (I) into eqn (2), eqn (2) can be written as follows:

(8)

where Uj denotes 1/12 and W, respectively; bl is 0, 0, and q respectively; &~ is the differential
operator, which is:

(9)

FUNDAMENTAL SOLUTIONS

The fundamental solutions play an important role in the derivation of the boundary
integral equations. In this section, the construction of the fundamental solutions for
Reissner's plates on a two parameter foundation will be discusscd in detail. The differential
equation for finding the fundamental solutions is:

(10)

in which J«(, x) is the Dirac delta function, Cis the source point and :c is a field point
(Vander Weeen, 1982). Equation (10) is uSt.'d to represent an infinite plate under the action
of a unit point at point Cin the direction k. Following Hormander's method (1976), the
solutions of eqn (10) can be written in the following form :

(II)

(12)

where q,«(, x) is an unknown scalar function, <0&. is the cofactor matrix of &., which is:

_ 0
2

[D(C+Gr> I +JlV2+C2-Dkr I +Jl]
oLOXp 2 2

<0&:) = -CO&TQ = C o~ (D I ; Jl V2_ C)

COM) = (DV2-C)(D I ;JlV2_C).

Substituting eqn (II) into eqn (10) and defining two coefficients « = (Dkr+CGr)/
[D(C+Gr>J and fJ = Ckr/[D(C+Gr)], we obtain

D)C;JlY;'2(1+ ~)(V4_«V2+fJ)(V2_;'2)q,(C,X)= -cS(C,x). (13)

Equation (13) is a sixth order differential equation with a scalar function as the
unknown. In order to reduce eqn (13), we introduce the two auxiliary functions which are
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the fundamental solutions of second and fourth order differential equations. respectively.
In the above equation. we assume:

(V 2_;.2)t!>«(•.l') = A«(.x)

(V~ -/XV 2 + P)t!>(C. :t) = B«(. x).

Equation (13) can be written as the following two equations:

3(I-Jl)2( Gr) 2 2 ;:D -Z- 1+ C (V -). )B(C.x) = -u«(.x).

(14a)

(14b)

(15a)

(15b)

in which d 2 = [K+(K 2-1)1/2]W. e2 = [K_(I(2_1)1/2]W./ 4 = I/P and K = /X[2/Z.
With the aid of eqns (14). cP(C. x) can be expressed with a linear combination of the

auxiliary functions and their derivatives as follows:

From the expressions for cI and (', we know that the fundamental solution of eqn (15a)
consists of three cases. i.e. K = I. K > I and 0 ~ K < I. According to the Fourier transform,
the solutions of eqns (15) are:

_ /2 (I)

A(C.x) - . ,.1, Re[Ho (~,)]. 0 ~ K < I
a Sin _'I'

• Z •
B(<,. x) = - Ko(u)

na

1(I - Jl)2 2 ( Gr)a =4D -Z- ;. 1+ C .

(17<1)

(17b)

(17c)

(17d)

( 17c)

where Koand K, are the modified BessIe functions. H~I) is the Hankel function (Abramowitz
and Stegun. 1965). K=COSZt/J. (I-K2)1/2=sin2t/J. t/Je [0. 7l/4), ,2= (X,(.\')-XI(0)2+
(X2(X)-X2({)2, ~ = C,IO;2+r/!)//. In what follows. we consider only the case of 0 ~ K < I
which seems to be valid for the most common foundation materials. The other cases are
similar. Combining eqns (17), (16) and (II). and considering eqns (I) and (4). we can ob­
tain the fundamental solutions of the generalized displacements and boundary tractions for
Reissner's plate on a two parameter foundation. which are given in the Appendix.

BOUNDARY INTEGRAL EQUATIONS

The boundary integral equations for Reissner's plates on a two parameter foundation
can be obtained by the method of weighted residuals. The final formulation is of the form:
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in which C;j(C) = hi} if Cen. Clj(C) = ~ljj2 if' is on the smooth boundary. S. If' is on the
nonsmooth boundary. S. Cij(C) depends on the geometry of the boundary (Vander Weeen.
1982).

There are three boundary integral equations in eqn (8). The number of boundary
integral equations is equal to the number of boundary unknowns for simply-supported and
clamped boundaries. Thus eqn (18) can be solved. There are four boundary unknowns for
a free boundary. So the fourth boundary integral equation must be established. By writing
the weighted residual equation corresponding to eqn (6) and using eqn (7), the fourth
boundary integral equation can be expressed as follows:

( 19)

where Cr = 1if' e nr• Cr = 1(2 if' is on the smooth boundary. S. If' is on the nonsmooth
boundary. Cr depends on the geometry of the boundary. The asterisked kernel functions
ofeqns (18) and (19) are given in the Appendix.

NUMERICAL IMPLEMENTATION

The analytical solutions of eqns (18) and (19) 'Ire not e~lsy to obtain, and hence it is
necessary to solve the boundary integral equations (18) and (19) numerically. For the
numerical implementation of the present formulation. the following procedure is used. The
boundary of the plate is divided into N elements with M nodes. The generalized boundary
displacements (Wand l/J.) and tractions [M". M", and P l +Gr(o Wjvn)] are to be defined in
terms of their nodal values. Over every boundary element between two nodes variables are
interpolated linearly. 1n the discretization procedure. continuous elements are employed
away from the corner point and partially discontinuous elements (Patterson and Sheikh,
1984) in close to the corner point to avoid the treatment of the corner point. By using the
above procedure and introducing boundary conditions. eqn (18) for simply-supported and
clamped boundaries. or eqns (18) and (19) for free boundary. are reduced to a system of
linear algebraic equations.

Solving the resulting linear algebraic equations. all boundary displacements and trac­
tions are known. 1f results are required at internal points, eqn (18) with C;] = ~I] can be
used for calculating the displacements. Stress resultants at internal points can be calculated
by coupling eqn (18) with Cli =h'l and eqns (I) with the derivatives being taken with respect
to the coordinates of' (Karam and Telles. 1988).

APPLICATIONS

Two examples are studied to verify the correctness of the present formulation and
demonstrate the accuracy of the solution. For each example. the plate is subjected to a
uniform distributed load q. Thirty-two boundary elements are employed on the entire
boundary for each example. The results obtained are compared with the analytical solution
of thin plates for the thickness h being very small.

Example I. This example is a simply-supported thick square plate on a two parameter
foundation with side length a and modulus of elastic foundation Kr(kra~(D) = 200. The
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Table I. W. and M. for the simply-supported thick square plate on a two
parameter foundation with K, =s 200 and J.I = 0.25

h/a
0.005
0.1
0.2
Thin platet

GF = 5
WJJ/qa4 "'ijqa~

0.2249633 2.406552
0.2303082 2.352117
0.2440886 2.198786
0.2263888 2.417870

G F = 20
a',D!qa4 Jijqa~

0.1559777 1.606397
0.1581634 1.563309
0.1637296 1.444638
0.1567556 1.612893

tThe solutions ofthin plates arc obtained by the method oftrigonometric
series.

Table 2. W•• M. and M. of the clamped thick circular plate on a two parameter foundation with Kr = 200 and
J.I =0.3

GF = 5 GF = 20
h/a W.D/qa' M./qa~ M';qa~ W.D/qa' ,"i./qaZ M./qa Z

0.005 0.4447239 1.676206 -5.521532 0.3383348 1.162126 -5.021927
0.1 0.4467960 1.600244 -5.282508 0.3412689 1.124891 -4.708540
0.2 0.4520058 1.407280 -4.689815 0.3484621 1.028416 -3.896167
Yu.1957 0.4448609 1.675682 -5.495585 0.3384423 1.161785 -4.994785

results of the center deflections. W•• and center bending moments. M•• are shown in Table
I for the different values of GF(Gra!jD) and the thickness. h.

Example 2. This example is a clamped thick circul.tr plate on two parameter foundation
with r'ldius tl and modulus of clastic foundation Kl' = 200. The results of W•• M. and the
boundary bending moments M. are shown in Table 2 for different values of GI' and the
thickness h. and compared with the a",llytical solutions of thin plates on a two parameter
foundation.

In Tables I and 2. W. = ~l/.x 10' 2. M. = ~i.x 10 2 and Mh = Mhx 10- 2•

CONCLUSIONS

This paper has presented the fundamental solutions and boundary integral equation
formulation of Reissner's plates on two parameter foundations. On the basis of the fonnula
presented. two numerical examples have been calculated with the application of partially
discontinuous and continuous elements. From Tables I and 2. we see that the solutions are
close to the analytical solutions of thin plates on a two parameter foundation for h being
very small when using a small number of boundary elements. This fact illustrates the
correctness of the present formulation and the accuracy of the solutions. The treatment of
free edges in this paper is only adapted to the Pasternak type foundation.

Ackno...ledgement-This project is financially supported by the National Science Foundation of China.

REFERENCES

Abramowitz. M. and Stegun. I. A. (1965). Handhook 0/ Mathematical Functions. Dover. New York.
Hormander. L. (1976). Linear Pal'lial Differential Operator. Springer. Berlin.
Karam. V. J. and Telles. J. C. F. (1988). On boundary elements for Reissner's plate theory. Engng Analysis S.

21-27.
Kerr. A. D. (1964). Elastic and viscoelastic foundation models. J. Appl. Mech. 31.491-498.
Patterson. C. and Sheikh. M. A. (1984). Interelement continuity in boundary element methods. In Topics in

Boundary Element Re.fearch (Edited by C. A. Brebbia). Vol. I.
Sclvadurai. A. P. S. (1979). Elastic Analysis 0/ Soi/-Foundalion Interaction. Elsevier. New York.
Vander Wecen. F. (1982). Application of the boundary integral equation method of Reissner's plate model. Int.

J. Num. Engng 18. 1-10.
Yu. Y. Y. (1957). Axisymmetric bending of circular plates under simultaneous action of lateral load. force in the

middle plane. and clastic foundation. J. Appl. Mech. 14. 141-143.



Behaviour of p1a1es on two parameter foundations

APPENDIX
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The asterislted Iternel functions which appeared in cqns (IS) and (19) are as fonows:

I IZ
U:'(C.x) ,. ltD(I-p) IB,(x)6.,-A,(x)'..r.l1 + 4D(I-p)A.z sin 2l1t

x H'lIt, Hzllt 116.,+[0/1. +lIzlltz - ~ (lit, Hzllt ,)}.r.,,}
I Z

U:,('.x) ,. - U1.('.x) .. SOlI, sin 20/1l1t,r..

Ut,C'•.1:) = - SDII,I:in 2l1t CI-:)A.Z lItz+lIto)

i1U:,<,.x) I
Z

[ I ]
en .. SOlI, sin 2l1t 0/1:'.•'" +;lIt I (n.-2r..,,,)

ilUt,C'.x) 11 [2 ]
en -SDII,sin2l1t (I_p)A.Zllt ,+o/I""

w~C.x) - - 2~ Ko(A.,,)

oW~'.x) A.,
en -2It K ,(A."),,,

P~('•.1:) - 2~,I:K,(:)(2'." .•,"-6.,.,,,-,.•n,) +2A ,(:)(4,.,'.•'" -6.,.,,,

in which

k,
II'-C+G,' : - .tr.

k uz D,
A., - (riG,) • '" - ex.(x) , '" - , ..n••

lito - 2 Re[H~'l(~r)l. "', - 2 Re[~HI'I(~r)).

till - 2 ReWH~II(~r)l. til, - 2 Re[~'HI"(~')I.

"'. - 2 Rel~·H~II(~r)l. til, - 2 Re[~'HII)(~')I.

2 I
A,(:) - Ko(:)+ -K,(:). B,(:)" Ko(:) + -K,(:).

: :

where Ko and K, are the modified Bessel functions and H~I) and HI'I are the Hanltel functions (Abramowitz and
Stcgun. 1965).
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